在geo_point字段上工作的多bucket聚合和概念上的工作非常类似于range(范围)聚合.
用户可以定义原点的点和距离范围的集合。聚合计算每个文档值与原点的距离,并根据范围确定其所属的bucket(桶)(如果文档和原点之间的距离落在bucket(桶)的距离范围内,则文档属于bucket(桶) )
PUT /museums
{
"mappings": {
"doc": {
"properties": {
"location": {
"type": "geo_point"
}
}
}
}
}
POST /museums/doc/_bulk?refresh
{"index":{"_id":1}}
{"location": "52.374081,4.912350", "name": "NEMO Science Museum"}
{"index":{"_id":2}}
{"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}
{"index":{"_id":3}}
{"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}
{"index":{"_id":4}}
{"location": "51.222900,4.405200", "name": "Letterenhuis"}
{"index":{"_id":5}}
{"location": "48.861111,2.336389", "name": "Musée du Louvre"}
{"index":{"_id":6}}
{"location": "48.860000,2.327000", "name": "Musée d'Orsay"}
POST /museums/_search?size=0
{
"aggs" : {
"rings_around_amsterdam" : {
"geo_distance" : {
"field" : "location",
"origin" : "52.3760, 4.894",
"ranges" : [
{ "to" : 100000 },
{ "from" : 100000, "to" : 300000 },
{ "from" : 300000 }
]
}
}
}
}
响应结果:
{
...
"aggregations": {
"rings_around_amsterdam" : {
"buckets": [
{
"key": "*-100000.0",
"from": 0.0,
"to": 100000.0,
"doc_count": 3
},
{
"key": "100000.0-300000.0",
"from": 100000.0,
"to": 300000.0,
"doc_count": 1
},
{
"key": "300000.0-*",
"from": 300000.0,
"doc_count": 2
}
]
}
}
}
指定的字段必须是geo_point类型(只能在映射中显式设置)。它还可以保存一个geo_point字段的数组,在这种情况下,在聚合期间将考虑所有这些字段。原点可以接受geo_point类型支持的所有格式:
对象格式:{ "lat" : 52.3760, "lon" : 4.894 }- 这是最安全的格式,因为它是最明确的lat (纬度)& lon(经度)值
字符串格式:"52.3760, 4.894" - 第一个数值是lat(纬度),第二个是lon(经度)
数组格式:[4.894, 52.3760] - 它基于GeoJson标准,第一个数字是lon(经度),第二个数字是lat(纬度)
在默认情况下,距离单位是m(米),但它也可以接受:mi(英里),in(英寸),yd(码),km(公里),cm(厘米),毫米(毫米)
POST /museums/_search?size=0
{
"aggs" : {
"rings" : {
"geo_distance" : {
"field" : "location",
"origin" : "52.3760, 4.894",
"unit" : "km", #1
"ranges" : [
{ "to" : 100 },
{ "from" : 100, "to" : 300 },
{ "from" : 300 }
]
}
}
}
}
#1 距离将以公里计算
有两种距离计算模式:arc(默认) 和 plane, arc(电弧)计算模式是最准确的,plane模式是最快的,但是最不准确。当考虑搜索上下文是“narrow”,跨越较小的地理区域(约5km)可以用plane,plane将为非常大的区域(例如跨大陆搜索)的搜索返回更高的误差区间。距离计算类型可以使用distance_type参数设置。
POST /museums/_search?size=0
{
"aggs" : {
"rings" : {
"geo_distance" : {
"field" : "location",
"origin" : "52.3760, 4.894",
"unit" : "km",
"distance_type" : "plane",
"ranges" : [
{ "to" : 100 },
{ "from" : 100, "to" : 300 },
{ "from" : 300 }
]
}
}
}
}
Keyed Response
将keyed标志设置为true会将一个惟一的字符串键与每个bucket(桶)关联起来,并将范围作为散列而不是数组返回:
POST /museums/_search?size=0
{
"aggs" : {
"rings_around_amsterdam" : {
"geo_distance" : {
"field" : "location",
"origin" : "52.3760, 4.894",
"ranges" : [
{ "to" : 100000 },
{ "from" : 100000, "to" : 300000 },
{ "from" : 300000 }
],
"keyed": true
}
}
}
}
返回结果:
{
...
"aggregations": {
"rings_around_amsterdam" : {
"buckets": {
"*-100000.0": {
"from": 0.0,
"to": 100000.0,
"doc_count": 3
},
"100000.0-300000.0": {
"from": 100000.0,
"to": 300000.0,
"doc_count": 1
},
"300000.0-*": {
"from": 300000.0,
"doc_count": 2
}
}
}
}
}
也可以为每个范围自定义key
POST /museums/_search?size=0
{
"aggs" : {
"rings_around_amsterdam" : {
"geo_distance" : {
"field" : "location",
"origin" : "52.3760, 4.894",
"ranges" : [
{ "to" : 100000, "key": "first_ring" },
{ "from" : 100000, "to" : 300000, "key": "second_ring" },
{ "from" : 300000, "key": "third_ring" }
],
"keyed": true
}
}
}
}
返回结果:
{
...
"aggregations": {
"rings_around_amsterdam" : {
"buckets": {
"first_ring": {
"from": 0.0,
"to": 100000.0,
"doc_count": 3
},
"second_ring": {
"from": 100000.0,
"to": 300000.0,
"doc_count": 1
},
"third_ring": {
"from": 300000.0,
"doc_count": 2
}
}
}
}
}