Elasticsearch 高手之路
  • Introduction
  • First Chapter
  • 1.ElasticSearch 5.x 安装
    • 1.1.Window 环境
    • 1.2.Linux 环境
  • 2.基础学前班
  • 3.基础
    • 3.1.配置文件
    • 3.2.Mapping
      • 3.2.1.字段的数据类型
        • 3.2.1.1.核心数据类型
        • 3.2.1.2.复合数据类型
        • 3.2.1.3.Geo地理数据类型
        • 3.2.1.4.特定数据类型
      • 3.2.2.Meta-Fields(元字段)
        • _index,_uid,_type,_id 元字段
        • _source,_size 元字段
        • _all, _field_names元字段
        • _parent,_routing 元字段
        • _meta 元字段
      • 3.2.3.Mapping parameters(映射参数)
        • analyzer(分析器)
        • normalizer(归一化)
        • boost(提升)权重
        • Coerce(强制类型转换)
        • copy_to(合并参数)
        • doc_values(文档值)
        • dynamic(动态设置)
        • enabled(开启字段)
        • fielddata(字段数据)
        • format (日期格式)
        • ignore_above(忽略超越限制的字段)
        • ignore_malformed(忽略格式不对的数据)
        • include_in_all(_all 查询包含字段)
        • index_options(索引设置)
        • index (索引)
        • fields(字段)
        • norms (标准信息)
        • null_value(空值)
        • position_increment_gap(短语位置间隙)
        • properties (属性)
        • search_analyzer (搜索分析器)
        • similarity (相似度模型)
        • store(存储)
        • term_vectors(词根信息)
      • 3.2.4.Dynamic Mapping(动态映射)
        • _default_ mapping(mapping中的_default_)
        • Dynamic field mapping(动态字段映射)
        • Dynamic templates(动态模板)
        • Override default template(覆盖默认模板)
    • 3.3. Analysis(分析)
      • 3.3.1.Anatomy of an analyzer(分析器的分析)
      • 3.3.2.Testing analyzers(测试分析器)
      • 3.3.3.Analyzers(分析器)
        • Configuring built-in analyzers(配置内置分析器)
        • Standard Analyzer(标准分析器)
        • Simple Analyzer(简单分析器)
        • Whitespace Analyzer(空格分析器)
        • Stop Analyzer(停止词分词器)
        • Keyword Analyzer(关键词分析器)
        • Pattern Analyzer(模式分析器)
        • Language Analyzers(语言分析器)
        • Fingerprint Analyzer(指纹分析器)
        • Custom Analyzer(自定义分析器)
      • 3.3.4. Tokenizers(分词器)
        • Standard Tokenizer(标准分词器)
        • Letter Tokenizer
        • Lowercase Tokenizer (小写分词器)
        • Whitespace Tokenizerr (空格分词器)
        • UAX URL Email Tokenizer
        • Classic Tokenizer
        • Thai Tokenizer(泰语分词器)
        • NGram Tokenizer
        • Edge NGram Tokenizer
        • Keyword Tokenizer(关键词分词器)
        • Pattern Tokenizer(模式分词器)
        • Path Hierarchy Tokenizer(路径层次分词器)
      • 3.3.5.Token Filters(词语过滤器)
      • 3.3.5.补充1:Token Filters(词语过滤器)
      • 3.3.5.补充2:Token Filters(词语过滤器)
      • 3.3.6.Character Filters(字符过滤器)
        • HTML Strip Character Filter(HTML标签过滤)
        • Mapping Character Filter(字符替换映射)
        • Pattern Replace Character Filter(正则替换字符)
    • 3.4. APIs
      • 3.4.1.索引 APIs (Indices APIs)
        • 创建/删除/获取->索引
        • 启动关闭/缩小/滚动->索引
        • 提交/获取/获取字段->映射
        • 索引->别名/是否存在/类型存在
        • 更新索引/获取->设置(未完成)
        • 分析器、索引模板(未完成)
        • Shadow replica indices 卷影副本索引
        • 索引->统计信息/段
        • 索引->恢复/分片存储
        • 清理缓存/刷新/同步刷新
        • 重新加载/强制合并
      • 3.4.2.文档 APIs (Document APIs)
        • 读写文档(Reading and Writing documents)
        • 索引文档 API
        • 获取/批量获取->文档
        • 删除/根据查询API删除
        • 更新/根据查询API更新
        • Bulk API(批量操作)
        • Reindex API(复制索引)
        • Term Vectors(词条向量)/Multi termvectors API
        • ?refresh
      • 3.4.3.搜索 APIs (Search APIs)
        • Search / URI Search
        • Request Body Search(未完成)
          • Query / From / Size
          • Sort / Source filtering
          • Fields / Script Fields / Doc value Fields
          • Post filter
          • Highlighting
          • Rescoring / Search Type
          • Scroll
          • Preference / Explain
          • Version / Index Boost
          • min_score / Named Queries
          • Inner hits / Search After
          • Field Collapsing 字段折叠
        • Search 模板/Multi Search 模板
        • Search Shards API
        • Suggesters
          • Term suggester
          • Phrase Suggester
          • Completion Suggester
          • Context Suggester
          • 返回suggester的类型
        • Multi Search API
        • Count API
        • Validate API
        • Explain API
        • Profile API
          • Profiling Queries
          • Profiling Aggregations
          • Profiling Considerations
        • Percolator / Field stats API
        • Field Capabilities API
    • 3.5.Query DSL(DSL方式查询)
      • 3.5.1.查询和过滤上下文
      • 3.5.2.Match All 查询
      • 3.5.3.全文搜索(Full Text Search)
        • 匹配查询(Match Query)
        • 短语匹配查询(Match Phrase Query)
        • 短语前缀匹配查询(Match Phrase Prefix Query)
        • 多字段查询(Multi Match Query)
        • 常用术语查询(Common Terms Query)
        • (Query String Query) 未完成
      • 3.5.4.Term级别查询(Term level queries)
        • Term 查询
        • Terms 查询
        • Range 查询(范围查询)
        • Exists 查询(非空值查询)
        • Prefix 查询(前缀查询)
        • Wildcard 查询(通配符查询)
        • Regexp 查询(正则表达式查询)
        • Fuzzy 查询(模糊查询)
        • Type Query(类型查询)
        • Ids Query(ID 查询)
      • 3.5.5.复合查询(Compound queries)
        • Constant Score 查询
        • Bool 查询
        • Dis Max 查询
        • Function Score 查询
        • Boosting 查询
        • Indices 查询
      • 3.5.6.Joining 查询(连接查询)
        • Nested Query(嵌套查询)
        • Has Child Query
        • Has Parent Query
        • Parent Id Query
      • 3.5.7.地理位置查询 (Geo queries)
        • GeoShape Query(地理形状查询)
        • Geo Bounding Box Query(地理边框查询)
        • Geo Distance Query(地理距离查询)
        • Geo Distance Range Query(地理距离范围查询)
        • Geo Polygon Query(地理多边形查询)
      • 3.5.8.专业查询(Specialized queries)
      • 3.5.9.Span 查询
        • Span Term 查询
        • Span Multi Term 查询
        • Span First 查询
        • Span Near 查询
        • Span Or 查询
        • Span Not 查询
        • Span Containing 查询
        • Span Within 查询
        • Span Field Masking 查询
    • 3.6.Aggregations(聚合分析)
      • 3.6.1.量度聚合(Metric Aggregations)
        • 平均值聚合(Avg Aggregation)
        • 基数聚合(Cardinality Aggregation)
        • 扩展统计聚合( Extended Stats Aggregation)
        • 地理边界聚合(Geo Bounds Aggregation)
        • 地理重心聚合(Geo Centroid Aggregation)
        • 最大值聚合(Max Aggregation)
        • 最小值聚合(Min Aggregation)
        • Percentiles Aggregation
        • Percentile Ranks Aggregation
        • Scripted Metric Aggregation
        • Stats Aggregation
        • 总和聚合(Sum Aggregation)
        • Top hits Aggregation
        • Value Count Aggregation
      • 3.6.2.桶聚合(Bucket Aggregations)
        • 邻接矩阵聚合(Adjacency Matrix Aggregation)
        • Children Aggregation
        • 日期直方图聚合(Date Histogram Aggregation)
        • 日期范围聚合(Date Range Aggregation)
        • 多元化的采样器聚集(Diversified Sampler Aggregation)
        • 过滤器聚合(Filter Aggregation)
        • 多过滤器聚合(Filters Aggregation)
        • 地理距离聚合(Geo Distance Aggregation)
        • GeoHash网格聚合(GeoHash grid Aggregation)
        • 全局聚合(Global Aggregation)
        • 直方图聚合(Histogram Aggregation)
        • IP范围聚合(IP Range Aggregation)
        • 丢失字段聚合(Missing Aggregation)
        • 嵌套聚合(Nested Aggregation)
        • 范围聚合(Range Aggregation)
        • Reverse nested Aggregation
        • 采样聚合(Sampler Aggregation)
        • Significant Terms Aggregation
      • 3.6.3.管道聚合(Pipeline Aggregations)
        • 平均值桶聚合( Avg Bucket Aggregation)
        • 导数聚合(Derivative Aggregation)
        • 最大值桶聚合(Max Bucket Aggregation)
        • 最小值桶聚合(Min Bucket Aggregation)
        • 总和桶聚合(Sum Bucket Aggregation)
        • 统计桶聚合(Stats Bucket Aggregation)
        • 扩展信息桶聚合(Extended Stats Bucket Aggregation)
        • 百分数桶聚合(Percentiles Bucket Aggregation)
        • Moving Average Aggregation
        • 累积汇总聚合(Cumulative Sum Aggregation)
        • 桶脚本聚合(Bucket Script Aggregation)
        • 桶选择器聚合(Bucket Selector Aggregation)
        • 串行差异聚合(Serial Differencing Aggregation)
      • 3.6.4.矩阵聚合(Matrix Aggregations)
        • 矩阵统计(Matrix Stats)
      • 3.6.5.缓存频繁聚合(Caching heavy aggregations)
      • 3.6.6.仅返回需要聚合的结果(Returning only aggregation results)
      • 3.6.7.聚合元数据(Aggregation Metadata)
      • 3.6.8.返回聚合的类型(Returning the type of the aggregation)
    • Glossary of terms (词汇表)
    • 未完成的任务
  • 4.基础补充总结
    • 3.2.Mapping
    • 3.3.分析器与定义自己的分析器(Analyzer)
  • 原理
  • 实战
    • 结构化搜索
    • 聚合分析
    • 数据建模
    • 应用场景
  • PHP API
    • 安装与快速入门
    • 配置
    • 实战
  • 资料
  • 笔记
    • 1.x 升级 2.x
Powered by GitBook
On this page

Was this helpful?

  1. 3.基础
  2. 3.6.Aggregations(聚合分析)
  3. 3.6.2.桶聚合(Bucket Aggregations)

地理距离聚合(Geo Distance Aggregation)

Previous多过滤器聚合(Filters Aggregation)NextGeoHash网格聚合(GeoHash grid Aggregation)

Last updated 5 years ago

Was this helpful?

在geo_point字段上工作的多bucket聚合和概念上的工作非常类似于(范围)聚合.

用户可以定义原点的点和距离范围的集合。聚合计算每个文档值与原点的距离,并根据范围确定其所属的bucket(桶)(如果文档和原点之间的距离落在bucket(桶)的距离范围内,则文档属于bucket(桶) )

PUT /museums
{
    "mappings": {
        "doc": {
            "properties": {
                "location": {
                    "type": "geo_point"
                }
            }
        }
    }
}

POST /museums/doc/_bulk?refresh
{"index":{"_id":1}}
{"location": "52.374081,4.912350", "name": "NEMO Science Museum"}
{"index":{"_id":2}}
{"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}
{"index":{"_id":3}}
{"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}
{"index":{"_id":4}}
{"location": "51.222900,4.405200", "name": "Letterenhuis"}
{"index":{"_id":5}}
{"location": "48.861111,2.336389", "name": "Musée du Louvre"}
{"index":{"_id":6}}
{"location": "48.860000,2.327000", "name": "Musée d'Orsay"}

POST /museums/_search?size=0
{
    "aggs" : {
        "rings_around_amsterdam" : {
            "geo_distance" : {
                "field" : "location",
                "origin" : "52.3760, 4.894",
                "ranges" : [
                    { "to" : 100000 },
                    { "from" : 100000, "to" : 300000 },
                    { "from" : 300000 }
                ]
            }
        }
    }
}

响应结果:

{
    ...
    "aggregations": {
        "rings_around_amsterdam" : {
            "buckets": [
                {
                    "key": "*-100000.0",
                    "from": 0.0,
                    "to": 100000.0,
                    "doc_count": 3
                },
                {
                    "key": "100000.0-300000.0",
                    "from": 100000.0,
                    "to": 300000.0,
                    "doc_count": 1
                },
                {
                    "key": "300000.0-*",
                    "from": 300000.0,
                    "doc_count": 2
                }
            ]
        }
    }
}

指定的字段必须是geo_point类型(只能在映射中显式设置)。它还可以保存一个geo_point字段的数组,在这种情况下,在聚合期间将考虑所有这些字段。原点可以接受geo_point类型支持的所有格式:

  • 对象格式:{ "lat" : 52.3760, "lon" : 4.894 }- 这是最安全的格式,因为它是最明确的lat (纬度)& lon(经度)值

  • 字符串格式:"52.3760, 4.894" - 第一个数值是lat(纬度),第二个是lon(经度)

  • 数组格式:[4.894, 52.3760] - 它基于GeoJson标准,第一个数字是lon(经度),第二个数字是lat(纬度)

在默认情况下,距离单位是m(米),但它也可以接受:mi(英里),in(英寸),yd(码),km(公里),cm(厘米),毫米(毫米)

POST /museums/_search?size=0
{
    "aggs" : {
        "rings" : {
            "geo_distance" : {
                "field" : "location",
                "origin" : "52.3760, 4.894",
                "unit" : "km", #1
                "ranges" : [
                    { "to" : 100 },
                    { "from" : 100, "to" : 300 },
                    { "from" : 300 }
                ]
            }
        }
    }
}

#1 距离将以公里计算

有两种距离计算模式:arc(默认) 和 plane, arc(电弧)计算模式是最准确的,plane模式是最快的,但是最不准确。当考虑搜索上下文是“narrow”,跨越较小的地理区域(约5km)可以用plane,plane将为非常大的区域(例如跨大陆搜索)的搜索返回更高的误差区间。距离计算类型可以使用distance_type参数设置。

POST /museums/_search?size=0
{
    "aggs" : {
        "rings" : {
            "geo_distance" : {
                "field" : "location",
                "origin" : "52.3760, 4.894",
                "unit" : "km",
                "distance_type" : "plane",
                "ranges" : [
                    { "to" : 100 },
                    { "from" : 100, "to" : 300 },
                    { "from" : 300 }
                ]
            }
        }
    }
}

Keyed Response

将keyed标志设置为true会将一个惟一的字符串键与每个bucket(桶)关联起来,并将范围作为散列而不是数组返回:

POST /museums/_search?size=0
{
    "aggs" : {
        "rings_around_amsterdam" : {
            "geo_distance" : {
                "field" : "location",
                "origin" : "52.3760, 4.894",
                "ranges" : [
                    { "to" : 100000 },
                    { "from" : 100000, "to" : 300000 },
                    { "from" : 300000 }
                ],
                "keyed": true
            }
        }
    }
}

返回结果:

{
    ...
    "aggregations": {
        "rings_around_amsterdam" : {
            "buckets": {
                "*-100000.0": {
                    "from": 0.0,
                    "to": 100000.0,
                    "doc_count": 3
                },
                "100000.0-300000.0": {
                    "from": 100000.0,
                    "to": 300000.0,
                    "doc_count": 1
                },
                "300000.0-*": {
                    "from": 300000.0,
                    "doc_count": 2
                }
            }
        }
    }
}

也可以为每个范围自定义key

POST /museums/_search?size=0
{
    "aggs" : {
        "rings_around_amsterdam" : {
            "geo_distance" : {
                "field" : "location",
                "origin" : "52.3760, 4.894",
                "ranges" : [
                    { "to" : 100000, "key": "first_ring" },
                    { "from" : 100000, "to" : 300000, "key": "second_ring" },
                    { "from" : 300000, "key": "third_ring" }
                ],
                "keyed": true
            }
        }
    }
}

返回结果:

{
    ...
    "aggregations": {
        "rings_around_amsterdam" : {
            "buckets": {
                "first_ring": {
                    "from": 0.0,
                    "to": 100000.0,
                    "doc_count": 3
                },
                "second_ring": {
                    "from": 100000.0,
                    "to": 300000.0,
                    "doc_count": 1
                },
                "third_ring": {
                    "from": 300000.0,
                    "doc_count": 2
                }
            }
        }
    }
}
range